Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38718304

RESUMEN

In order to realize the prevailing artificial intelligence technology, memristor-implemented in-memory or neuromorphic computing is highly expected to break the bottleneck of von Neumann computers. Although high-performance memristors have been vigorously developed in labs or in industry, systematic computational investigations on memristors are seldom. Hence, it is urgent to provide theoretical or computational support for the exploration of memristor operating mechanisms or the screening of memristor materials. Here, a computational method based on the main input parameters learned from the first-principles calculations was developed to measure resistance switching of two-terminal memristors with sandwiched metal/ferroelectric semiconductor/metal architectures, which strikingly agrees with the experimental measurements. Based on our developed method, the diverse multiterminal memristors were designed to fully exploit the application of interlocked ferroelectricity of a ferroelectric semiconductor and realize their heterosynaptic plasticity, and their heterosynaptic behaviors can still be well described. Our developed method can provide a paradigm for the emulation of ferroelectric memristors and inspire subsequent computational exploration. Furthermore, our study also supplies a device optimization strategy based on the interlocked ferroelectricity and easy processing of two-dimensional van der Waals ferroelectric semiconductors, and our proposed heterosynaptic memristors still await further experimental exploration.

2.
J Am Chem Soc ; 146(12): 8298-8307, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498306

RESUMEN

Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg-1 K-1 kV-1) and ΔT/ΔE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 µC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.

3.
Lasers Med Sci ; 39(1): 89, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453744

RESUMEN

Various treatment modalities have been applied to atrophic scars. Fractional CO2 laser treatment has attracted increasingly more attention because of its quicker recovery time and fewer side effects. However, its limitation of sculpting the edge is an urgent shortcoming. In order to achieve a more effective result with fewer complications, we have integrated ultrapulse CO2 and fractional CO2 lasers to for the treatment of facial atrophic scars. The study included 25 patients (10 males and 15 females) diagnosed with moderate to severe atrophic scars between August 2020 and July 2022. All subjects underwent the same surgical treatment. The effects were assessed at baseline, 1 week, 1 month, and 3 months using photographic evidence. Objective evaluation of the results was conducted using a quartile grading scale, while the subjects' satisfaction and any adverse events were also recorded. The patients in the study underwent more than two laser sessions (2-5), resulting in substantial improvement in their appearance. The time interval between each session was 3-6 months. The majority of the patients (19/25, 76%) had a significant or even excellent improvement. Any adverse events observed, such as erythema, superficial crusting, and PIH, were of a mild nature and temporary in duration. This treatment combined two CO2 lasers is an effective and safe choice for atrophic scars in Asians.


Asunto(s)
Acné Vulgar , Láseres de Gas , Masculino , Femenino , Humanos , Cicatriz/patología , Dióxido de Carbono , Resultado del Tratamiento , Acné Vulgar/complicaciones , Eritema/etiología , Láseres de Gas/uso terapéutico , Atrofia/complicaciones
4.
Am J Emerg Med ; 75: 111-118, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939521

RESUMEN

BACKGROUND: The clinical benefits of steroid therapy during cardiac arrest (CA) are unclear. Several recent clinical trials have shown that administering corticosteroid therapy during CA may improve patient outcomes. The purpose of the present study was to determine whether providing corticosteroids improves outcomes for patients following CA. METHODS: We searched the PubMed, Embase, Cochrane Library, Web of Science and CNKI databases for randomized controlled trials comparing corticosteroid therapy to placebo during CA. RESULTS: Eleven relevant studies involving a total of 2273 patients were included in the meta-analysis. The statistical analysis showed that corticosteroid treatment during CA was significantly associated with an increased rate of sustained return of spontaneous circulation (ROSC) (OR: 2.05, 95% CI: 1.24 to 3.37, P < 0.01). Corticosteroid treatment during CA did not show a significant benefit in favorable neurological outcomes (OR: 1.13, 95% CI: 0.81 to 1.58, P = 0.49) or overall survival rate at hospital discharge (OR: 1.29, 95% CI: 0.74 to 2.26, P = 0.38). However, in the subgroup analysis, we found that patients had a significantly increased survival rate and ROSC if the dose of corticosteroid therapy above 100 mg methylprednisolone. The statistical analysis revealed no significant differences in adverse events. CONCLUSION: High-dose corticosteroid treatment (above 100 mg methylprednisolone) is associated with better overall survival rate at hospital discharge and ROSC outcomes. However, there is uncertainty regarding whether this treatment results in a benefit or harm to the favorable neurological outcomes at hospital discharge.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Paro Cardíaco Extrahospitalario , Humanos , Reanimación Cardiopulmonar/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Paro Cardíaco/terapia , Corticoesteroides/uso terapéutico , Metilprednisolona , Paro Cardíaco Extrahospitalario/terapia
5.
Int J Nanomedicine ; 18: 6411-6423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954453

RESUMEN

Skin photoaging is a complex biological process characterized by the accumulation of oxidative damage and structural changes in the skin, resulting from chronic exposure to ultraviolet (UV) radiation. Despite the growing demand for effective treatments, current therapeutic options for skin photoaging remain limited. However, emerging research has highlighted the potential of extracellular vesicles (EVs), including exosomes, micro-vesicles, apoptotic bodies and liposomes, as promising therapeutic agents in skin rejuvenation. EVs are involved in intercellular communication and can deliver bioactive molecules, including proteins, nucleic acids, and lipids, to recipient cells, thereby influencing various cellular processes. This comprehensive review aims to summarize the current research progress in the application of EVs for the treatment of skin photoaging, including their isolation and characterization methods, roles in skin homeostasis, therapeutic potential and clinical applications for skin photoaging. Additionally, challenges and future directions in EVs-based therapies for skin rejuvenation are discussed.


Asunto(s)
Exosomas , Vesículas Extracelulares , Envejecimiento de la Piel , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Piel/metabolismo , Comunicación Celular
6.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569858

RESUMEN

Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Soja/genética , Glycine max/metabolismo , Álcalis/metabolismo , Saccharomyces cerevisiae/metabolismo , Fitomejoramiento , Estrés Fisiológico/genética , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética
7.
ACS Nano ; 17(11): 10511-10520, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235757

RESUMEN

The filament growth processes, crucial to the performance of nanodevices like resistive switching memories, have been widely investigated to realize the device optimization. With the combination of kinetic Monte Carlo (KMC) simulations and the restrictive percolation model, three different growth modes in electrochemical metallization (ECM) cells were dynamically reproduced, and an important parameter, the relative nucleation distance, was theoretically defined to measure different growth modes quantitatively; hence their transition can be well described. In our KMC simulations, the inhomogeneity of storage medium is realized through introducing evolutionary void versus non-void sites within it to mimic the real nucleation during filament growth. Finally, the renormalization group method was used in the percolation model to analytically illustrate void-concentration-dependent growth mode transition, fitting KMC simulation results quite well. Our study found that the nanostructure of the medium can dominate the filament growth dynamics, as the simulation images as well as the analytical results are consistent with experiments results. Our study spotlights a vital and intrinsic factor, void concentration (relative to defects, grains, or nanopores) of a storage medium, in inducing filament growth mode transition within ECM cells. This theoretically proves a mechanism to tune performance of ECM systems that controlling microstructures of the storage media can dominate the filament growth dynamics, indicating an accessible strategy, nanostructure processing, for device optimization of ECM memristors.

8.
J Colloid Interface Sci ; 642: 505-512, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028157

RESUMEN

The electrochemical oxygen evolution reaction is a bottleneck reaction in hydrolysis and electrolysis because the four-step electron transfer leads to slow reaction kinetics and large overpotentials. This situation can be improved by fast charge transfer by optimizing the interfacial electronic structure and enhancing polarization. Herein, a unique metal (Ni) organic (diphenylalanine, DPA) framework Ni(DPA)2 (Ni-MOF) with tunable polarization is designed to bond with FeNi-LDH (layered double hydroxides) nanoflakes. The Ni-MOF@FeNi-LDH heterostructure delivers excellent oxygen evolution performance exemplified by an ultralow overpotential of 198 mV at 100 mA cm-2 compared to other (FeNi-LDH)-based catalysts. Experiments and theoretical calculations show that FeNi-LDH exists in an electron-rich state in Ni-MOF@FeNi-LDH due to polarization enhancement caused by interfacial bonding with Ni-MOF. This effectively changes the local electronic structure of the metal Fe/Ni active sites and optimizes adsorption of the oxygen-containing intermediates. Polarization and electron transfer of Ni-MOF are further enhanced by magnetoelectric coupling consequently giving rise to better electrocatalytic properties as a result of high-density electron transfer to active sites. These findings reveal a promising interface and polarization modulation strategy to improve electrocatalysis.

9.
Am J Transl Res ; 15(2): 1204-1214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915740

RESUMEN

OBJECTIVES: Scarring is a common but intricate problem, and topical anti-scarring drugs are the most widely used treatment. However, the wide range of drugs available makes it difficult for doctors and patients to choose from because of the lack of clinical comparisons. Therefore, we conducted an observational study to compare the clinical efficacy of different topical anti-scarring drugs. METHODS: Patients with post-suturing facial scars were enrolled in this study. The questionnaire was designed to record the basic characteristics of the patients. The Vancouver Scar Scale, SCAR scale, and measurements of scar width and thickness were used to evaluate scar quality. Patients who met the inclusion criteria were divided into four groups for comparison: the silicone preparation (SP), onion extract (OE), asiaticoside (AC) groups, and the untreated blank control (BC) group. The overall data were analyzed before they were confined to the zygomatic region. RESULTS: A total of 127 eligible patients were enrolled in this study. The results of the total and zygomatic scars demonstrated that SP, OE, and AC groups resulted in narrower scars and lower scar scale scores. The SP group depicted higher melanin efficacy than the other two groups. The OE group had the best pliability, whereas the AC group had the thinnest scar. CONCLUSIONS: In this study, we acquired expertise with different topical anti-scar agents: SP significantly reduced melanin levels, OE mainly benefited scar pliability, and AC was better at reducing scar thickness. These differences may be more instructive for clinical applications.

10.
J Phys Chem Lett ; 14(6): 1389-1394, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36729129

RESUMEN

An organic-inorganic hybrid resistive random-access memory based on a nanoporous zinc-based hydroquinone (Zn-HQ) thin film has been constructed with a Pt/Zn-HQ/Ag sandwich structure. The porous Zn-HQ functional layer was directly fabricated by a one-step molecular layer deposition. These Pt/Zn-HQ/Ag devices show a typical electroforming-free bipolar resistive switching characteristic with lower operation voltages and higher on/off ratio above 102. Our nanoporous hybrid devices can also realize multilevel storage capability and exhibit excellent endurance/retention properties. The connection and disconnection of Ag conductive filaments in nanoporous Zn-HQ thin film follow the electrochemical metallization mechanism. Our computational simulations confirm that the existence of nanopores in Zn-HQ thin films facilitates the Ag filament formation, contributing to the high performance of our hybrid devices.

11.
Sci Total Environ ; 857(Pt 1): 159390, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36243072

RESUMEN

Annual gross primary productivity (AGPP) is the basis for grain production and terrestrial carbon sequestration. Mapping regional AGPP from site measurements provides methodological support for analysing AGPP spatiotemporal variations thereby ensures regional food security and mitigates climate change. Based on 641 site-year eddy covariance measuring AGPP from China, we built an AGPP mapping scheme based on its formation and selected the optimal mapping way, which was conducted through analysing the predicting performances of divergent mapping tools, variable combinations, and mapping approaches in predicting observed AGPP variations. The reasonability of the selected optimal scheme was confirmed by assessing the consistency between its generating AGPP and previous products in spatiotemporal variations and total amount. Random forest regression tree explained 85 % of observed AGPP variations, outperforming other machine learning algorithms and classical statistical methods. Variable combinations containing climate, soil, and biological factors showed superior performance to other variable combinations. Mapping AGPP through predicting AGPP per leaf area (PAGPP) explained 86 % of AGPP variations, which was superior to other approaches. The optimal scheme was thus using a random forest regression tree, combining climate, soil, and biological variables, and predicting PAGPP. The optimal scheme generating AGPP of Chinese terrestrial ecosystems decreased from southeast to northwest, which was highly consistent with previous products. The interannual trend and interannual variation of our generating AGPP showed a decreasing trend from east to west and from southeast to northwest, respectively, which was consistent with data-oriented products. The mean total amount of generated AGPP was 7.03 ± 0.45 PgC yr-1 falling into the range of previous works. Considering the consistency between the generated AGPP and previous products, our optimal mapping way was suitable for mapping AGPP from site measurements. Our results provided a methodological support for mapping regional AGPP and other fluxes.


Asunto(s)
Cambio Climático , Ecosistema , Secuestro de Carbono , Suelo , Aprendizaje Automático , Carbono , Dióxido de Carbono/análisis
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981515

RESUMEN

This study aimed to characterize and identify the non-volatile components in Pogostemonis Herba by using ultra-perfor-mance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with UNIFI and an in-house library. The chemical components in 50% methanol extract of Pogostemonis Herba were detected by UPLC-Q-TOF-MS in both positive and negative MS~E continuum modes. Then, the MS data were processed in UNIFI combined with an in-house library to automatically characterize the metabolites. Based on the multiple adduct ions, exact mass, diagnostic fragment ions, and peak intensity of compounds and the fragmentation pathways and retention behaviors of reference substances, the structures identified by UNIFI were further verified and those of the unidentified compounds were tentatively elucidated. A total of 120 compound structures were identified or tentatively identified, including flavonoids, phenylpropanoids, phenolic acids, terpenes, fatty acids, alkaloids, and phenylethanoid glycosides. Sixteen of them were accurately identified by comparison with reference substances, and 53 compounds were reported the first time for Pogostemonis Herba. This study systematically characterized and identified the non-volatile compounds in Pogostemonis Herba for the first time. The findings provide a scientific basis for revealing the pharmacodynamic material basis, establishing a quality control system, and developing products of Pogostemonis Herba.

13.
Nat Commun ; 13(1): 7702, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513648

RESUMEN

Circular polarized light-dependent anomalous bulk photovoltaic effect - a steady anomalous photovoltaic current can be manipulated by changing the light helicity, is an increasingly interesting topic in contexts ranging from physics to chemistry. Herein, circular polarized light-dependent anomalous bulk photovoltaic effect is presented in achiral hybrid perovskites, (4-AMP)BiI5 (ABI, 4-AMP is 4-(aminomethyl)piperidinium), breaking conventional realization that it can only happen in chiral species. Achiral hybrid perovskite ABI crystallizes in chiroptical-active asymmetric point group m (Cs), showing an anomalous bulk photovoltaic effect with giant photovoltage of 25 V, as well as strong circular polarized light - sensitive properties. Significantly, conspicuous circular polarized light-dependent anomalous bulk photovoltaic effect is reflected in the large degree of dependence of anomalous bulk photovoltaic effect on left-and right-CPL helicity, which is associated with left and right-handed screw optical axes of ABI. Such degree of dependence is demonstrated by a large asymmetry factor of 0.24, which almost falls around the highest value of hybrid perovskites. These unprecedented results may provide a perspective to develop opto-spintronic functionalities in hybrid perovskites.

14.
Mater Today Bio ; 15: 100320, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35757026

RESUMEN

Long-term non-healing diabetic wounds are always a serious challenge and a global healthcare burden that needs to be resolved urgently in the clinic. Prolonged inflammation and impaired angiogenesis are the main direct causes of diabetic wounds. With the development of polymer biomaterials, various wound dressings have been created, but a few of them have been applied to the clinical management of diabetic wounds. Here, we developed a mussel-inspired bioactive scaffold consisting mainly of collagen and hyaluronic acid, which are natural biopolymer materials contained in human tissues. First, we fabricated different polydopamine modified lyophilized collagen hyaluronic acid scaffolds under different concentrations of dopamine alkaline solutions, 0.5, 1, 2 â€‹mg/mL, so named CHS-PDA-0.5, CHS-PDA-1, CHS-PDA-2. After testing their physical and chemical properties, antioxidant effect, inflammation regulation, as well as drug loading and release capabilities, we obtained a bioactive endothelial growth factor (EGF)-loaded wound dressing, CHS-PDA-2@EGF, which can resist reactive oxygen species (ROS) and promote the regeneration of chronic wounds in diabetic rats by reducing inflammation. In addition, the scaffold showed excellent swelling ability, a certain coagulation effect and reasonable degradation. Therefore, the scaffold has great potential to be used in clinical diabetic wound treatment as a low-cost and easily available wound dressing to accelerate chronic wound healing.

15.
Front Pharmacol ; 13: 823530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656294

RESUMEN

Whether Mineralocorticoid receptor antagonists (MRA) reduce mortality and cardiovascular effects of dialysis patients remains unclear. A meta-analysis was designed to investigate whether MRA reduce mortality and cardiovascular effects of dialysis patients, with a registration in INPLASY (INPLASY2020120143). The meta-analysis revealed that MRA significantly reduced all-cause mortality (ACM) and cardiovascular mortality (CVM). Patients receiving MRA presented improved left ventricular mass index (LVMI) and left ventricular ejection fraction (LVEF), decreased systolic blood pressure (SBP) and diastolic blood pressure (DBP). There was no significant difference in the serum potassium level between the MRA group and the placebo group. MRA vs. control exerts definite survival and cardiovascular benefits in dialysis patients, including reducing all-cause mortality and cardiovascular mortality, LVMI, and arterial blood pressure, and improving LVEF. In terms of safety, MRA did not increase serum potassium levels for dialysis patients with safety. Systematic Review Registration: (https://inplasy.com/inplasy-protocol-1239-2/), identifier (INPLASY2020120143).

16.
Aging (Albany NY) ; 14(6): 2902-2919, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332108

RESUMEN

The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of ß-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Mitofagia , Autofagia/fisiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia/fisiología
17.
Nano Lett ; 22(1): 476-484, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978815

RESUMEN

A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-941013

RESUMEN

OBJECTIVE@#To build a helical CT projection data restoration model at random low-dose levels.@*METHODS@#We used a noise estimation module to achieve noise estimation and obtained a low-dose projection noise variance map, which was used to guide projection data recovery by the projection data restoration module. A filtering back-projection algorithm (FBP) was finally used to reconstruct the images. The 3D wavelet group residual dense network (3DWGRDN) was adopted to build the network architecture of the noise estimation and projection data restoration module using asymmetric loss and total variational regularization. For validation of the model, 1/10 and 1/15 of normal dose helical CT images were restored using the proposed model and 3 other restoration models (IRLNet, REDCNN and MWResNet), and the results were visually and quantitatively compared.@*RESULTS@#Quantitative comparisons of the restored images showed that the proposed helical CT projection data restoration model increased the structural similarity index by 5.79% to 17.46% compared with the other restoration algorithms (P < 0.05). The image quality scores of the proposed method rated by clinical radiologists ranged from 7.19% to 17.38%, significantly higher than the other restoration algorithms (P < 0.05).@*CONCLUSION@#The proposed method can effectively suppress noises and reduce artifacts in the projection data at different low-dose levels while preserving the integrity of the edges and fine details of the reconstructed CT images.


Asunto(s)
Algoritmos , Artefactos , Tomografía Computarizada Espiral , Tomografía Computarizada por Rayos X/métodos
19.
Molecules ; 26(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34684703

RESUMEN

Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.


Asunto(s)
Catequina/análogos & derivados , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Vendajes/tendencias , Catequina/metabolismo , Catequina/farmacología , Cicatriz/prevención & control , Humanos , Hidrogeles/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Té/metabolismo , Cicatrización de Heridas/fisiología
20.
JACS Au ; 1(4): 475-483, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467310

RESUMEN

The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of ∼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...